PPI Articles & Presentations

Read interesting and informative short articles relevant to systems engineering and projects.

Description of The Wedge Model™

Share

For a PDF version of this article, please click here.

Abstract

The Vee Model, possibly first defined by NASA in the 1960s, repeated by Barry Boehm in 1979 and Rook in 1986, has served well as a depiction of design of non-trivial systems through physical levels of solution description on the left- hand side of the Vee, and physical realization of system elements, together with implicitly their integration to create higher physical level system elements, on the right-hand side of the Vee. The Vee model has commonly shown verification of system elements that are on the right-hand side, against requirements for each element that are on the left. Whilst valuable, this depiction is a very limited representation of the reality of development of non-trivial systems. The Wedge ModelTM extends the basic Vee model to incorporate verification and validation of requirements, design, system elements and system, within potentially a multiple-build development strategy.

Description

The Wedge ModelTM is a derivative of the well-known Vee Model (Boehm, 1979). The Wedge ModelTM shows the products of design on the left-hand side of the wedge, and the products of system integration on the right-hand side, with verification (is the work product correct with respect to the inputs used to create it – usually “meets requirements”?) and validation (does the work product correspond to the need for the work product?) superimposed. Colloquially, verification is – have we done the job right, and validation is – have we done the right job?

The Wedge ModelTM shows multiple builds in the third dimension – a second time axis with time coming out of the screen or page towards the reader. Thus, the face of the Wedge represents the last build (version, release, etc.) in each case. All of the verification and validation concerns on the face are replicated back onto the earlier builds. Note that not all potential verifications and validations will be carried out on all of the products associated with all of the builds. It is an engineering management role to decide which of the products will be subject to verification and validation, and to what degree.

Here is a full Wedge Model. The model may appear to be a little complex, but it is actually made up of a number of very simple parts, each reflecting a verification or validation engineering practice that is conducive to successful engineering. In the Wedge Model, the basic Vee model content is present, validation is added, verification beyond subsystem and system verification is added, and multiple builds are shown on an additional time axis. Notation-wise, the tail of an arrow originates from a subject of V or V, and the head of the arrow is pointing to the reference for that verification or validation. Verification and validation are represented in red and blue respectively, and are annotated with representative methods.

For validation, only the closest, and most common physical level is shown as a reference. But validation can, in principle and practice, span multiple physical levels without limit.

The model initially may look scary, but it is actually constructed of very simple pieces, each piece representing a verification or validation relationship.

The basic set of relationships in the Wedge model is shown for a physical level of requirements specification at the top, and the next physical level down of design below it. This pattern is repeated downwards through the physical levels, ending wherever a system element is non-developmental.

A description of the model follows. As a reminder, verification is shown in red. Validation is shown in blue. The subjects of verification and validation are at the arrow tails. The references for verification and validation are at the arrow heads.

 

1. It all starts with the capture and validation of requirements at the top-level, in this case the enterprise or business or capability system level. That validation is carried out using mainly the methods of System Requirements Analysis (SRA), the validation activity show in blue at the top left.

2. People make mistakes in doing system requirements analysis. Therefore, we want to verify these work products of system requirements analysis. The most common and effective way of doing this requirement work production verification is with a System Requirements Review (SRR), shown in red. Other methods of verification of requirements analysis work products may also be employed.

 


3. 
System Requirements Reviews (SRRs) also provide some additional requirements validation, although they are not very effective for this purpose. The SRR is also shown in blue at the top because of its requirements validation contribution.  

4. At some point in time, requirements are formally released and drive design. Architecture (i.e. conceptual design) is produced, and there is a desire to verify architecture before committing to the much greater effort of detailed detail. This purpose is most commonly served by an Architectural Design Review (ADR) shown in red. Architecture may also be verified by means additional to or alternate to design review. Here, the term architectural design is used with reference to a system of interest (Sol), and a physical level of design one physical level below the Sol.

5. It is all very well verifying architecture, but the reality that requirements validation and design verification can never be perfect is well understood. So, the possibility always exists that the design is still inconsistent with meeting needs. We are therefore interested in design validation. A low cost, and the most common, way of achieving this design validation is to have stakeholders participate in the design review, thereby, through visibility to them of the design, identifying any failure to meet their needs. ADR is therefore also shown in blue for its validation contribution, but only if stakeholders participate.

 

6. If design is invalid for the usual reason that design is invalid, that is, because requirements are invalid, then we have achieved more requirements validation. Requirements validation is two steps removed from the primary purpose of a design review, but design reviews are purposefully used to achieve additional requirements validation by inviting stakeholder participation.

 


7.
The corresponding comments apply to Detailed Design Review (DDR), for design verification, design validation and additional requirements validation, the last two only if stakeholders participate.

8. Eventually requirements on the sub-system, here for example the aircraft, are released, and it all starts again, and again, and again, until our development stops, here at, for example, the engine. Note that at level 2, where the aircraft appears in the example, another element will be the project system. If the Vee for that system is taken out and placed beside the aircraft Vee, we get the “Dual Vee” (Forsberg and Mooz, 1992), a view that is useful where the emphasis is the management of a project to create a product. The downside is that we lose the enterprise system (etc.) and the references for validation of the product that the project is to deliver.

9. Eventually the engine comes into existence and there is a desire to verify that the engine meets the requirements for the engine, typically by test and other verification methods performed on the engine. Another verification method sometimes used is a Requirements Satisfaction Audit (RSA), also shown in red. This is sometimes called a Functional Configuration Audit, a strange and problematic name at best. The activity goes through the whole body of evidence to answer the question “can we reasonably conclude that the engine meets the requirements for the engine?”. That evidence examined includes test and other direct verification results, verification procedure used, test cases used (if applicable), calibration of test equipment, system configuration data, the disposition of failures, and any evidence of falsification of test results.

10. Having verified that the engine meets its requirements, we are now concerned with validating the engine – does the engine satisfy the need for the engine? This is most commonly achieved by operational test and evaluation, for example flight test. Equivalent methods in other sectors are clinical trials in the medical sector, and test marketing in consumer products.

11. Flight testing an engine and finding that it crashes the aircraft is an undesirable approach. Another method of subsystem validation is Hardware-in-the-Loop Simulation, where the engine is exercised in a partly physical and partly simulated environment, and the results of the simulation analyzed to draw a conclusion on meeting need. For space subsystems and systems, “in-the-loop simulation” may be the only viable means of subsystem or system validation.

12. Eventually, through system integration, the propulsion subsystem comes into existence. It is verified by testing etc. as meeting its requirements. Aggregates of system elements are created in a typical system integration activity. Each aggregate is usually subject to integration testing. Integration testing can be regarded as a small “v” verification activity, performed by or for the system developers and lacking the independence normally sought for a formal verification activity. Some small “v” validation of system elements is also achieved within system integration.

13. The red diagonal line pointing downwards indicates another verification activity. The activity addresses the concern “is the actual propulsion system built as described by its design description?” If the answer is no, we are compromised in maintaining it, replicating it, adapting it and fixing latent defects. A Physical Configuration Audit (PCA) may be used for this purpose. The PCA painstakingly compares the actual product against its design description, and identifies any inconsistencies.


14.
Verification and validation generally continue up to the top-level system. At the level of the aircraft in the example, validation would typically be in the form of an operational trial, while at the top level for a military capability system, validation would typically be via a military exercise.

15. However, reality is that systems and subsystems will often be developed in multiple builds (releases, versions), sometimes for end use and sometimes for purely engineering reasons, or technical management reasons, for example, risk reduction. The Wedge Model™ shows multiple builds in the third dimension – a second time axis with the time coming out of the screen or page towards the reader. Thus, the face of the Wedge represents the last build (version, release, etc.). Each build has requirements, design and implementation. All of the verification and validation concerns on the face of the wedge are replicated back onto the earlier builds. Note that not all potential verifications and validations will be carried out on all of the products associated with all of the builds. It is an engineering management role to decide which of the products will be subject to verification and validation, and to what degree.

The “Vee” model is sometimes misunderstood to be a development model, and a time-sequential Waterfall development model at that. This is not the case. The original “Vee” represents the end products on the design and build sides of the “Vee”, but says almost nothing about how the developer got there.

The Wedge Model adds some of the story as to how the developer got there, but only insofar as intermediate design artifacts and corresponding intermediate builds. There are time trends, but no strict time axes, even for incremental and evolutionary builds. These could be sequential or partly concurrent on each side of the Wedge. The timing dependencies are mostly finishing dependencies, not starting or doing dependencies (we have to have finished building the engine before we can finish building the propulsion system).

A “Project System” invariably appears at Level 2 in the Wedge ModelTM. The Project System has system elements, and lower physical level system elements, and lower again, and again, down to, for example, individual test procedures and emails. Each is subject to the same principles of verification and validation and the same relationships.

Conclusion

The Wedge Model™ provides a comprehensive representation of the end products and intermediate products within the development of larger, more complex systems, together with the superimposition of the subjects of verification and validation, the references for verification and validation, and representative methods of verification and validation, within both single build and multiple build development strategies for the system itself and for each developmental system element.

References

Boehm, B., “Guidelines for verifying and validating software requirements and design specifications”, in Proceedings of the European Conference on Applied Information Technology of the International Federation for Information Processing (Euro IFIP), Vol. 1, pp. 711-719, 1979.

Rook, Paul, “Controlling Software Projects” in Software Engineering Journal Vol. 1, No. 1, pp. 7-10, January 1986, ISSN 0268-6961.

Forsberg, K., and Mooz, H., “The relationship of systems engineering to the project cycle”. Engineering Management Journal Vol. 4, No. 3, pp. 36-43, 1992.

Share

Published By

Systems engineering thought leader, consultant, trainer and coach, impacting people's lives on six continents.
Published 2 years ago

 

2105_PPI-WEB_Ad-template

Make 2022 A Year of Learning Improvement

PPI's 2022 full course schedule is now live. Click here and register your interest today!

PPI_Logo_Symbol_Only.png
FREE Monthly SE Industry News?
Scroll to Top