

1-DAY SEMINAR

A Business Introduction to Systems Engineering

A Concise, Powerful Introduction to Systems Engineering Principles and Practice

Part A: 2.5 hours – Overview of Business Value (for executives, managers and project personnel)

Part B: 5.5 hours – Systems Engineering in Practice (for engineers, other project personnel and managers)

Why Systems Engineering Matters

Systems engineering is a proven force multiplier for enterprises. It clarifies problems, defines solutions, and delivers value across the entire solution life-cycle. By integrating engineering practices with business goals, it reduces risk, avoids costly rework, and ensures that stakeholder needs are met effectively.

Part A: Overview of Business Value

 Demonstrates the business purpose of systems engineering, providing abundant evidence of its value for executives, senior managers, and other decision-makers.

Part B: Systems Engineering in Practice

 Exposes engineers and other stakeholders to major systems engineering practices, showing how they improve technical performance and strengthen project and business outcomes.

Who Should Attend

This seminar is perfect for:

- Part A: Executives, senior managers, program managers, functional managers, project managers, engineering managers, and engineers in any role.
- Part B: Engineers in any role and other technical staff, as well as engineering managers, project managers, and other managers.

No technical background is needed. This seminar emphasizes concepts, structure, and principles over technical detail.

Key Learning Outcomes

By the end of the seminar:

Part A participants will:

- Understand the value of systems engineering at business, project, and technical levels.
- Appreciate how systems engineering reduces risk and improves outcomes.
- Be familiar with activities such as requirements capture and validation, design, trade-off studies, system integration, verification and validation, all in a business context.

Part B participants will:

- Be exposed to methods within requirements capture, validation, and specification; physical and logical design; trade-off studies; system integration; and verification & validation (V&V).
- Understand how these practices reduce risk, avoid costly rework, and improve technical outcomes.
- See how systems engineering provides a common language and framework across teams and disciplines.

Earn CE/CPD Credit

This seminar is recognized for professional development purposes:

INCOSE Certified Systems Engineering Professional (CSEP)

 8 PDUs toward INCOSE CSEP certification maintenance

PMI Talent Triangle® Suggested PDUs

- 3 hours Business Acumen
- 5 hours Ways of Working

Seminar Content Overview

Part A: Overview of Business Value

- · The role of the engineer and systems engineering
- · Systems engineering as a force multiplier
- Proof of the value of systems engineering to the enterprise
- · Systems views and systems thinking
- · Development strategies and life-cycle perspectives
- · Product Line Engineering, Digital Engineering, Digital Twin and Al
- · Principles, concepts, and process elements that deliver business value

Part B: Systems Engineering in Practice

- · Requirements capture and validation: objectives, methods, and ROI
- Physical and logical design methods
- · Simulation modeling, MBSE languages and tools
- · Interface engineering and common pitfalls
- · Effectiveness evaluation, decision-making, and design optimization
- · Requirements specification principles and pitfalls
- · System integration strategies and planning
- · Verification and validation methods and technical reviews
- · Systems engineering management: planning, managing risk, requirements, interfaces, design complexity, and configuration

Wrap-up: key points, pitfalls to avoid, process improvement, and PPI resources.

Training Method and Materials

The seminar combines:

- · Short, impactful presentations to build understanding
- Mini-workshops to apply key concepts
- Discussion sessions to explore practical implications

Participants will receive:

- A printed or digital training manual
- Workshop activities and worked examples
- Access to supplementary checklists and reference materials
- · Complimentary access to PPI's Systems Engineering Goldmine

Why Learn with PPI?

Over 30 years, PPI has trained more than **20,000 professionals** in **43 countries** to apply systems engineering principles effectively. Our training combines **rigorous methods**, **real-world examples**, and **expert instruction** to maximize your professional impact.

"The training was nothing short of excellent and given by a true authority in the field. We got absolutely outstanding support from PPI ahead of the training as well."

Course participant

A Business Introduction to Systems Engineering (1 Day)

Seminar Outline

PART A: OVERVIEW OF BUSINESS VALUE (MORNING SESSION)

0. Welcome

- · Our time together
- · The role of the engineer
- The role of systems engineering
- · A force multiplier, not a rule book!
- Proof of the value of systems engineering to the enterprise

1. A Life-Cycle View of Value Delivery

- · System views and system thinking
- · Illustration of the application of systems engineering
- · System/product development strategies
- SE and Product Line Engineering
- Digital Engineering, Digital Twin and Al

2. Principles, Concepts and Elements that Deliver Value

- · Systems engineering principles and their relationship to value delivery
- SE process elements
- Concurrent (simultaneous) Engineering
- Traceabilities
 - · Requirements traceability
 - Design traceability
 - · Verification traceability
 - · Everything-to-everything traceability

PART B: SYSTEMS ENGINEERING IN PRACTICE (AFTERNOON SESSION)

3. Problem Definition - Requirements Analysis

- RA objective
- RA methodology
- · RA return on investment

4. Physical Design Part A

- Physical design objective
- Architecting
- · Technology and innovation in solution development
- Configuration items

5. Logical Design

- · Logical design why do it?
- Forms of logic
- · Behavior modeling, MBSE languages and tools

6. Physical Design Part B

- What next?
- · Pitfalls in architecting
- Interface engineering

A Business Introduction to Systems Engineering (1 Day)

7. Effectiveness Evaluation, Decision and Design Optimization

- · Approaches: AHP, MAUT
- · Building a value model
- · Using a value model
- · Pitfalls

8. Requirements Specifications

- Requirement specification types and their roles
- · Principles of effective requirements specification
- Pitfalls in the use of public domain requirements specification standards

9. System Integration

- Influences on successful system integration
- Integration planning 9 alternative SI strategies
- · System integration tasks

10. Verification and Validation

- V&V defined
- · Technical reviews
 - · Requirements reviews
 - Architectural design review (ADR) PDR?
 - Detail design review (DDR) CDR?
 - · Requirements satisfaction audits (FCAs)
 - Design description (BS-BS) correspondence audits (PCAs)
- System/product verification and validation methods and tools

11. Engineering Management

- Planning
- Integrating engineering specialties
- Management frameworks Project (Work) Breakdown Structure (PBS/WBS)
- Managing configuration
- Managing interfaces
- Technical performance measurement (TPM)
- Managing residual risk

12. Summary of Key Points

- Key points revisited
- 11 more keys to success

13. What now? - Moving Forward

- · Pitfalls to avoid
- · Process improvement: using CMMI and other benchmarks
- PPI resources

www.ppi-int.com

systems/product engineering training & consulting for project success ...

