
Software Requirements and the Ethics of Software Engineering

Capers Jones, President

Capers Jones & Associates LLC

Email: Capers.Jones3@Gmail.com

Copyright © 2009-2011 by Capers Jones & Associates LLC.

All rights reserved.

Abstract

Software requirements are a weak link in the chain of software engineering
technologies. Requirements are usually incomplete and change at rates in excess of
2% per calendar month. For many years one common definition of quality has been
“conformance to requirements.” However this definition ignores the fact that some
requirements are hazardous or “toxic” and should not be included in software
applications. Since clients themselves may not realize the dangers of toxic
requirements, software engineers have a professional and ethical responsibility to
point out the hazards of dangerous requirements and ensure that they are safely
eliminated. An example of a “toxic requirement” is the famous Y2K problem which did
not originate as a coding bug but rather as an explicit but dangerous user requirement.

INTRODUCTION

There are a number of “standard” definitions for software quality which have not been
rigorously examined for flaws and problems. One of the oldest of these quality
definitions is:

“Quality means conformance to requirements.”

mailto:Capers.Jones3@Gmail.com

There are several problems with this definition, but the major problem is that
requirements errors or bugs are numerous and severe. Errors in requirements
constitute about 20% of total software defects.

Defining quality as conformance to a major source of error is circular reasoning and
therefore this must be considered to be a flawed and unworkable definition. Obviously
a workable definition for quality has to include errors in requirements themselves.

One definition of quality which can be applied to requirements is:

“The absence of defects that would cause an application to either stop completely or
produce incorrect results.”

This definition would include requirements defects such as the former Y2K bug. Don’t
forget that the famous Y2K problem originated as a specific user requirement and not
as a coding bug. Many software engineers warned clients and managers that limiting
date fields to two digits would cause problems, but their warnings were ignored or
rejected outright.

Another chronic problem with requirements is “requirements creep” or continued
growth after the requirements phase. This is not unexpected because the business
world is never static so changes will certainly occur.

However the software industry often is not prepared for the magnitude of changing
requirements. The measured rates of change for requirements run from less than 1%
per calendar month to more than 4% per calendar month.

For a large application that starts at a nominal 10,000 function points and might have
a 36 month development cycle, it is easily possible for another 3,000 function points
to be added in mid development, and these will probably add at least six months to
the development schedule.

If software engineering is going to become a true profession rather than an art form,
software engineers have a responsibility to help customers define requirements in a

thorough and effective manner. They also have a responsibility to alert clients to the
fact that changes in requirements will occur and need to be handled in an effective
manner.

Far too often the literature on software quality is passive and makes the incorrect
assumption that users are going to be 100% effective in identifying requirements. This
is a dangerous assumption. User requirements are never complete and they are often
wrong. For a software project to succeed, requirements need to be gathered and
analyzed in a professional manner, and software engineering is the profession that
should know how to do this well.

It should be the responsibility of the software engineers to insist that proper
requirements methods be used. These include:

1. Reusable requirements

2. Data mining of legacy applications to extract hidden requirements

3. Joint Application Design (JAD)

4. Quality Function Deployment (QFD)

5. Prototypes – evolutionary

6. Prototypes - disposable

7. Requirements inspections

8. Agile “embedded users”

9. Running readability software tools on requirements such as the FOG index

10. Running text static analysis tools on requirements

11. Requirements standards

12. Requirements change control boards

13. Requirements estimation tools that predict creep and deferred features

14. Requirements estimation tools that predict quality and costs

15. Focus groups

16. Domain specialists for topics such as security, performance, and ease of use

17. Use of graphical techniques such as the unified modeling language (UML)

18. Use of decision tables

19. Use of model or pattern-based requirements

20. Use of test-driven development

The users of software applications are not software engineers and cannot be expected
to know optimal ways of expressing and analyzing requirements. Ensuring that
requirements collection and analysis are at state of the art levels devolves to the
software engineering team.

Three Chronic Requirements Problems

There are three widespread problems with software requirements that need better
solutions than are customary for software projects:

1. Many requirements are dangerous or toxic and should be eliminated.

2. Requirements are never complete and grow at rates > 1% per calendar month.

3. Some clients insist on stuffing extra, superfluous features into software.

Software engineers have an ethical and professional obligation to caution clients about
these problems and to assist clients in solving them, if possible. In other words,
software engineers need to play a role similar to the role of physicians. We have an
obligation to our clients to diagnose known requirements problems and to prescribe
effective therapies.

Once user requirements have been collected and analyzed, then conformance to them
should of course occur. However before conformance can be safe and effective,

dangerous or toxic requirements have to be weeded out, excess and superfluous
requirements should be pointed out to the users, and potential gaps that will cause
creeping requirements should be identified and also quantified. The users themselves
will need professional assistance from the software engineering team, who should not
be passive bystanders for requirements gathering and analysis.

Unfortunately requirements bugs cannot be removed by ordinary testing. If
requirements bugs are not prevented from occurring, or not removed via formal
inspections or other methods, test cases that are constructed from the requirements
will confirm the errors and not find them. (This is why years of software testing never
found and removed the Y2K problem.)

Another issue is that for some brand new kinds of innovative applications there may
not be any users other than the original inventor. Consider the history of successful
software innovation such as the APL programming language, the first spreadsheet,
and the early web search engine that later became Google.

These innovative applications were all created by inventors to solve problems that
they themselves wanted to solve. They were not created based on the normal concept
of “user requirements.” Until prototypes were developed, other people seldom even
realized how valuable the inventions would be. Therefore “user requirements” are not
completely relevant to brand new inventions until after they have been revealed to the
public.

Given the fact that software requirements grow and change at measured rates of 1%
to more than 4% ever calendar month during the subsequent design and coding
phases, it is apparent that achieving a full understanding of requirements is a difficult
task.

Software requirements are important, but the combination of toxic requirements,
missing requirements, and excess requirements makes simplistic definitions such as
“quality means conformance to requirements” hazardous to the software industry.

What Goes Into Software Requirements?

Software requirements obviously describe the key features and functions that a
software application will contain. But requirements specifications also serve other
business purposes. For example the requirements should also discuss any limits or
constraints on the software, such as performance criteria, reliability criteria, security
criteria and the like.

The costs and schedules of building software applications are strongly influenced by
the size of the application in terms of the total requirements set that will be
implemented. Therefore requirements are the primary basis of ascertaining software
size.

By fortunate coincidence the structure of function point metrics is a good match to the
fundamental issues that should be included in software requirements. In chronological
order these seven fundamental topics should be explored as part of the requirements
gathering process:

1. The outputs that should be produced by the application.

2. The inputs that will enter the software application.

3. The logical files that must be maintained by the application.

4. The entities and relationships that will be in the logical files of the application.

5. The inquiry types that can be made to the application.

6. The interfaces between the application and other systems.

7. Key algorithms that must be present in the application.

Five of these seven topics are the basic elements of the International Function Point
Users Group (IFPUG) function point metric.

The fourth topic, “entities and relationships” are part of the British Mark II function point
metric and the newer COSMIC function point.

The seventh topic, “algorithms” is a standard factor of the feature point metric, which
added a count of algorithms to the five basic function point elements used by IFPUG.

The similarity between the topics that need to be examined when gathering
requirements and those used by the functional metrics makes the derivation of function
point totals during requirements a fairly straightforward task.

(In 1994 the author’s company built a successful function point generation tool that
worked on the Bachman Analyst Workbench. Unfortunately Bachman went out of
business fairly soon thereafter.)

There are some 24 additional topics that also need to be decided during the
requirements phase. Some of these are “non-functional requirements and some are
business requirements needed to determine whether funding should be provided.
These additional topics include:

1. The size of the application in function points and source code.

2. The schedule of the application from requirements to delivery.

3. The cost of the application by activity and also in terms of cost per function point.

4. The business value of the application and return on investment.

5. The major risks facing the application; i.e. termination, delays, overruns, etc.

6. The security criteria for the application and its companion data bases

7. The features of competitive applications by business rivals

8. The supply chain of the application, or related applications upstream or downstream

9. The legacy requirements derived from older applications being replaced.

10. The laws and regulations that impact the application (i.e. tax laws; privacy etc.).

11. The quality levels in terms of defects, reliability, and ease of use criteria.

12. The warranty terms of the application and responses to warranty claims.

13. The hardware platform(s) on which the application will operate.

14. The software platform(s) such as operating systems and data bases.

15. The nationalization criteria, or the number of foreign language versions.

16. The performance criteria, if any, for the application.

17. The training requirements or form of tutorial materials that may be needed.

18. The installation requirements for putting the application onto the host platforms or
making it available as a service-oriented application.

19. The reuse criteria for the application in terms of both reused materials going into
the application and also whether features of the application may be aimed at
subsequent reuse by downstream applications.

20. The use cases or major tasks users are expected to be able to perform via the
application.

21. The control flow or sequence of information moving through the application.

22. Possible future requirements for follow-on releases.

23. The hazard levels of any requirements that might be potentially “toxic.”

The seven primary topics and the 23 supplemental topics are not the only items that
can be included in requirements, but none of these 30 should be omitted by accident
since they can all have a significant effect on software projects.

Note: As this paper was being written the International Function Point Users Group
(IFPUG) issued a major change to function point counting. The new rules separate
functional requirements from non-functional requirements. However these new rules
are likely to change and they are so new that no examples of non-functional size are
currently available. The data shown in this article is hypothetical and predicted by the
author’s Software Risk Master Tool.

Gathering and Analyzing Software Requirements

Today in 2011 almost half of all major applications are replacements for aging legacy
applications, some of which have been in use for more than 25 years. Unfortunately
legacy applications seldom have current specifications or requirements documents
available.

Due to the lack of available information about the features and functions of the prior
legacy application, a new form of requirements analysis is coming into being. This

new form starts by “data mining” of the legacy application in order to extract hidden
business rules and algorithms from the source code. Data mining of legacy
applications can also be used to gather data for sizing, in terms of both function points
and code statements.

For new applications requirements gathering and requirements analysis methods will
vary based on the overall size of the application as measured in function points.

Very small applications < 100 function points: Very small applications below 100
function points in size are very common for smart phones, tablets, and personal
assistant devices. Usually the requirements for these small applications are created
by the application developer or the inventor, rather than being gathered from potential
customers.

For some small applications, such as board games like checkers or chess, the
requirements may be hundreds of years old and are based on the rules of the game.
All the software is doing is moving the game to a computer, so requirements are mainly
those of aesthetics and ease of use rather than actual functionality.

Small applications < 1000 function points: For smaller applications between about
100 function points and 1000 function points the Agile method of having an embedded
user is successful. Also successful are prototypes and the use of a variety of tools for
both recording requirements, evaluating readability levels, and looking for errors and
inconsistencies.

Large applications of 10,000 function points: For larger systems between 1000
and 10,000 function points the Agile approach of embedded users is no longer
effective. The reason is that large systems usually have more than 1000 users, and
no single user representative can possibly know what the others will use the software
for.

For larger applications focus groups, Joint Application Design (JAD), and Quality
Function Deployment (QFD) are all useful. Requirements standards are useful for
large systems too. Requirements tools, readability tools, and static analysis tools for
text are also valuable.

Prototypes are not as successful for very large systems because if a prototype is built
that covers 10% of the features, then it becomes a large and difficult program in its
own right.

Massive applications of 100,000 function points: For massive applications
between 10,000 and 100,000 function points it is necessary to use state of the art
requirements methods to have even a hope of delivering the application with
acceptable quality levels and anywhere near the planned delivery date.

Requirements creep for these large multi-year applications can approach or even
exceed 50% of the planned requirements. Such massive volumes of unanticipated
requirements can delay deliveries by more than a year and raise costs by more than
65% compared to the original budgets.

Some of the massive applications in this size range include enterprise resource
planning tools such as Oracle and SAP, large operating systems such as Windows 8,
national air-traffic control, and a variety of large military systems.

Quantifying Requirements Size, Growth, and Quality for a Small Application

This section will show some typical requirements topics for both a small program of
100 function points and a large system of 10,000 function points in size. The large
size was selected because requirements problems go up with size, and 10,000
function points is the range where requirements gaps, requirements creep,
requirements defects, and toxic requirements become severe.

Table 1 shows traditional requirements using interviews and text documentation.
Other methods such as the unified modeling language (UML) or the agile method of
embedding users in the team would create somewhat different results. However for
large systems in the 10,000 function point size range, requirements are troublesome
using most methods.

The data in table 1 was produced using the author’s Software Risk Master Tool which
predicts requirements size and defect volumes and supports all requirements
practices.

Function Points 100 10,000
Functional requirements 90 8,500
Non-functional
requirements

10 1,500

Source code (Java) 5,300 530,000
Specific requirements 65 7,407
Functional requirements 60 6,295
Non-functional requirement 5 1,112
Superfluous requirements 4 375
Requirements pages 50 2,500
English words 22,500 1,125,000
Requirements
gathering/analysis days

10 60

Total requirements writing
days

10 556

Words per requirement 349 152
Words per function point 180 113
FOG readability index <10 >15
Diagrams 6 300
Requirements
completeness

95% 60%

Requirements team 2 12
Requirements reviewers 10 40
Days to define
requirements

10 60

Days to read and
understand requirements

2 135

Total reading days (clients
+ team)

7 5,405

Requirements errors 10 875
Toxic requirements 0 18
Missing requirements 11 1,050
Creep per month in
function points

2 150

Total creep function points 4 2,687
Deferred function points 0 1,522
Test cases for
requirements

66 4,932

Average removal efficiency 96% 84%
Best removal efficiency 99% 96%
Average requirements
defects delivered

2 178

Lowest requirements
defects delivered

0 42

Major requirements
defects

0 36

Requirements costs $29,813 $2,809, 162

Table 1: Requirements for Applications of 100 and 10,000 Function Points

As can be seen from Table 1, requirements for small applications are relatively easy
to gather and relatively free from serious problems.

Requirements for large systems, on the other hand, are very difficult to gather and
also have a large number of significant errors, significant gaps, and a tendency to grow
continuously throughout the development cycle.

Because users are not trained in expressing requirements or in understanding how
many problems might occur due to requirements creep and requirements errors, it is
up to the software engineering team to assist the users by ensuring that requirements
gathering, requirements analysis, and above all requirements defect removal methods
carried out in a professional fashion using proven techniques.

Continuous Requirements Growth after the Initial Release

Once software applications have been delivered to clients or customers, that does not
mean that requirements stop growing and changing. For most applications growth is
continuous for as long as the applications are in use. They tend to grow at rates of
between 4% and 15% per calendar year forever.

Because requirements and applications continue to grow, this means that application
size increases too whether measured with function points, logical code statements, or
any other metric.

To illustrate the points about continuous growth, table 2 shows both typical
development patterns and typical post-release patterns for a large system of 10,000
function points written in the Java language. Table 2 shows 15 intervals as predicted
by the author’s Software Risk Master Tool. Table 2 uses integer values and makes
some simplifying assumptions in order for the patterns to be clear.

Table 2: Ten-Year Requirements Growth after Initial Release

Measurement Intervals Function Points Logical Code
Statements in Java

1 Size at end of
requirements

10,000 530,000

2 Size of requirements
creep

2,000 106.000

3 Size of planned
delivery

12,000 636,000

4 Size of deferred
features

- 4,800 - 254,400

5 Size of first delivery to
clients

7,200 381,600

6 Size after year 1 usage 12,000 636,000
7 Size after year 2 usage 13,000 689,000
8 Size after year 3 usage 14,000 742,000
9 Size after year 4 usage
(mid-life kicker)

17,000 901,000

10 Size after year 5 usage 18,000 954,000
11 Size after year 6 usage 19,000 1,007,000
12 Size after year 7 usage 20,000 1,060,000
13 Size after year 8 usage
(mid-life kicker)

23,000 1,219,000

14 Size after year 9 usage 24,000 1,272,000
15 Size after year 10
usage

25,000 1,325,000

Table 2 shows larger than average growth at year 9 and year 13. For commercial
software it is necessary to add significant new features in order to stay current with
competitive applications. These are called “mid life kickers.”

As can be seen from table 2, requirements growth never stops for as long as software
applications are being used unless the developer withdraws support due to bringing
out a new product of the same type. This is why Windows XP no longer changes
except to fix bugs and security flaws.

Some applications continue well past 10 years. Several IBM applications and the U.S.
Air Traffic control system have been in use for more than 30 years.

Summary and Conclusions about Requirements

Software requirements have been a very weak link in the chain of software engineering
technologies. Because requirements are always incomplete and always contain
errors, it is the responsibility of the software engineering team to ensure that state of
the art requirements methods are used. Users are not trained in requirements
methods and cannot provide requirements that are complete and error-free without
assistance from trained requirements experts, plus state of the art requirements tools.

References and Readings on Software Requirements

Ambler, S.; Process Patterns – Building Large-Scale Systems Using Object
Technology; Cambridge University Press; SIGS Books; 1998.

Artow, J. & Neustadt, I.; UML and the Unified Process; Addison Wesley, Boston, MA;
2000.

Bass, Len, Clements, Paul, and Kazman, Rick; Software Architecture in Practice;
Addison Wesley, Boston, MA; 1997; ISBN 13: 978-0201199307; 452 pages.

Berger, Arnold S.; Embedded Systems Design: An Introduction to Processes, Tools,
and Techniques; CMP Books; 2001; ISBN 10-1578200733.

Booch, Grady; Jacobsen, Ivar, and Rumbaugh, James; The Unified Modeling
Language User Guide; Addison Wesley, Boston, MA; 2nd edition 2005.

Cohn, Mike; User Stories Applied: For Agile Software Development; Addison Wesley,
Boston, Ma; 2004; ISBN 0-321-20568.

Fernandini, Patricia L; A Requirements Pattern; Succeeding in the Internet Economy;
Addison Wesley, Boston, MA; 2002; ISBN 0-201-7386-0; 506 pages.

Gack, Gary; Managing the Black Hole – The Executives Guide to Project Risk; The
Business Expert Publisher; Thomson, GA; 2010; ISBSG10: 1-935602-01-2.

Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlissides, John; Design Patterns:
Elements of Reusable Object Oriented Design; Addison Wesley, Boston MA; 1995.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading,
MA; 1993; ISBN 10: 0201631814.

Inmon William H, Zachman, John, and Geiger, Jonathan G; Data Stores, Data
Warehousing, and the Zachman Framework; McGraw Hill, New York; 1997; ISBN 10:
0070314292; 358 pages.

Jones, Capers; “Early Sizing and Early Risk Analysis”; private publication by Capers
Jones & Associates LLC; Narragansett, RI 2011.

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality; Addison
Wesley Longman, Boston, MA; ISBN 10: 0-13-258220—1; 2011; 585 pages.

Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, NY;
ISBN 978-0-07-162161-8; 2010; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, New York, NY; ISBN
978-0-07-150244-3; 2008; 662 pages.

Jones, Capers; Estimating Software Costs; McGraw Hill, New York, NY; 2007; ISBN-
13: 978-0-07-148300-1.

Marks, Eric and Bell, Michael; Service-Oriented Architecture (SOA): A Planning and
Implementation Guide for Business and Technology; John Wiley & Sons, New York;
2006; ISBN 10: 0471768944; 384 pages.

Orr, Ken; Structured Requirements Definition; Ken Orr and Associates, Inc, Topeka,
KS; 1981; ISBN 0-9605884-0-X; 235 pages.

Robertson, Suzanne and Robertson, James; Mastering the Requirements Process;
2nd edition; 2006; Addison Wesley, Boston, MA; ISBN 0-321-41949-9; 560 pages.

Martin, James & McClure, Carma; Diagramming Techniques for Analysts and
Programmers; Prentice Hall, Englewood Cliffs, NJ; 1985; ISBN 0-13-208794-4; 396
pages.

Warnier, Jean-Dominique; Logical Construction of Systems; Van Nostrand Reinhold,
London, UK; ISBN 0-4442-22556-3; 177 pages.

Wiegers, Karl E; Software Requirements; 2nd edition; 2003; Microsoft Press,
Bellevue, WA; ISBN 10: 0735618798; 544 pages.

