
Software Quality Metrics: 

 

Three Harmful Metrics and Two Helpful Metrics 

 
June 6, 2012 

 
Capers Jones, VP and Chief Technology Officer 

Namcook Analytics LLC 
 
 

Abstract 
 
The cost of finding and fixing bugs or defects is the largest single expense element in the 
history of software.  Bug repairs start with requirements and continue through 
development.  After release, bug repairs and related customer support costs continue until 
the last user signs off.  Over a 25 year life expectancy of a large software system in the 
10,000 function point size range, almost 50 cents out of every dollar will go to finding 
and fixing bugs. 
 
Given the fact that bug repairs are the most expensive element in the history of software, 
it might be expected that these costs would be measured carefully and accurately.  They 
are not.  Most companies do not measure defect repair costs, and when they do, they 
often use metrics that violate standard economic assumptions. 
 
This article discusses three bad metrics and two good metrics.  The three bad metrics are: 
1) cost per defect; 2) lines of code; and 3) technical debt. 
 
The two good metrics are: 1) function points, for normalization of data; and 2) Defect 
removal efficiency, for measuring the percentage of bugs found prior to release and 
afterwards via maintenance. 
 
 
 

Copyright © 2012 by Capers Jones.  All rights reserved. 

 



 2 

Introduction 

 

The costs of finding and fixing bugs have been the major cost driver of large software applications since 

the software industry began.  One might think that the software industry would have solid and reliable 

measurement data on its most expensive activity, but this is not the case. 

 
Many companies do not start to measure bugs or defect repairs costs until testing starts, so all defects and 

repairs associated with requirements and design are invisible or under reported. 

 

Even worse, many attempts to measure quality use metrics that violate standard economic assumptions, and 

conceal or distort the economic value of high quality.  There are three very hazardous metrics that all 

distort quality economics and under state the true value of software quality: 

 

1. Cost per defect; 

 

2. Lines of code for normalization of results; and  

 

3. Technical debt. 
 

All three of these metrics share a common failing.  They all ignore fixed costs, which will be dealt with 

later in this article.  Individually each has other failings too. 

 

There are two helpful and valid metrics that show the economic value of software quality and also can be 

used to predict quality and delivered defects, as well as measure: 

 

1. Function points for normalization of results; and 

 

2. Defect removal efficiency. 

 
Let us start by considering the reasons that the three bad metrics are harmful, and then why the two good 

metrics are useful. 

 

The Errors and Hazards of Cost per Defect 

 

The cost-per-defect metric has been in continuous use since the 1960’s for examining the economic value 

of software quality.  Hundreds of journal articles and scores of books include stock phrases, such as “it 

costs 100 times as much to fix a defect after release as during early development.” 

   

Typical data for cost per defect varies from study to study but resembles the following pattern circa 2012: 

 

Defects found during requirements =     $250 
Defects found during design =      $500 

Defects found during coding and testing =  $1,250 

Defects found after release =   $5,000 

 

While such claims are often true mathematically, there are five hidden problems with cost per defect that 

are usually not discussed in the software literature and are not well understood: 

 

1. Cost per defect penalizes quality and is always cheapest where the greatest numbers of bugs are 

found. 

2. Cost per defect ignores fixed costs.  Even with zero defects there will be costs for inspections, 

testing, static analysis, and maintenance personnel.  These costs are either fixed or inelastic and do 

not change at the same rate as defect volumes. 



 3 

3. Because more bugs are found at the beginning of development than at the end, the increase in cost 

per defect is artificial.  Actual time and motion studies of defect repairs show little variance from 

end to end, with some exceptions. 

4. Even if calculated correctly, cost per defect does not measure the true economic value of improved 

software quality.  Over and above the costs of finding and fixing bugs, high quality leads to 

shorter development schedules and overall reductions in development costs.  These savings are not 

included in cost per defect calculations, so the metric understates the true value of quality by 

several hundred percent. 

5. Cost per defect is not rigorous in distinguishing between valid unique defects and duplicate defect 

reports.  High volume commercial packages often receive thousands of reports for the same bug.  

Even though the bug need only be fixed once, there are logistical costs for customer support, 

defect logging, and defect tracking that occur.  

The cost per defect metric has such serious shortcomings for economic studies of software quality that it 

needs to be supplemented by additional information that distinguish between fixed and variable costs.   

Used by itself cost per defect penalizes quality and is cheapest for buggy applications and for bugs found 

early due to fixed costs. 
 

Consider a well-known law of manufacturing economics: 
 

“If a manufacturing cycle includes a high proportion of fixed costs and there is a reduction in the number 

of units produced, the cost per unit will go up.” 
 

As an application moves through a full test cycle that includes unit test, function test, regression test, 
performance test, system test, and acceptance test, the time required to write test cases and the time 

required to run test cases stays almost constant; but the number of defects found steadily decreases. 
 

Table 1 shows the approximate costs for the three cost elements of preparation, execution, and repair for 

the test cycles just cited using a fixed rate $75.75 per hour for all activities. 
 

• Writing test cases takes 16.5 hours for every test stage. 

• Running test cases takes 9.9 hours for every test stage. 

• Defect repair takes 5.0 hours for every defect found. 

 
Even though every activity is based on fixed and unchanging amounts of time, look at what happens to cost 

per defect in Table 1: 

 

Table 1:  Cost per Defect for Six Forms of Testing 

(Assumes $75.75 per staff hour for costs) 

 

 

Writing 

Test Cases 

Running 

Test Cases 

Repairing 

Defects 

TOTAL 

COSTS 

Number of 

Defects 

$ per 

Defect 

       

Unit test $1,250.00 $750.00 $18,937.50 $20,937.50 50 $418.75 

       

Function test $1,250.00 $750.00 $7,575.00 $9,575.00 20 $478.75 

       

Regression test $1,250.00 $750.00 $3,787.50 $5,787.50 10 $578.75 

       

Performance test $1,250.00 $750.00 $1,893.75 $3,893.75 5 $778.75 

       

System test $1,250.00 $750.00 $1,136.25 $3,136.25 3 $1,045.42 

       

Acceptance test $1,250.00 $750.00 $378.75 $2,378.75 1 $2,378.75 

 



 4 

What is most interesting about Table 1 is that cost per defect rises steadily as defect volumes come down, 

even though Table 1 uses a constant value of 5.0 hours to repair defects for every single test stage!   

 

In other words every defect identified throughout Table 1 had a constant cost of $378.25 and 5 hours when 

only repairs are considered.   

 
In fact, all three columns use constant values and the only true variable in the example is the number of 

defects found! 

 

In real life, of course, preparation, execution, and repairs would all be variables.  But by making them 

constant, it is easier to illustrate the main point:  cost per defect rises as numbers of defects decline. 

 

Since the main reason that cost per defect goes up as defects decline is due to the fixed costs associated 

with preparation and execution, it might be thought that those costs could be backed out and leave only 

defect repairs.  Doing this would change the apparent results and minimize the initial errors, but it would 

introduce three new problems: 

 

1. Removing quality cost elements that may total more than 50% of total quality costs would make it 

impossible to study quality economics with precision and accuracy. 

2. Removing preparation and execution costs would make it impossible to calculate cost of quality 

(COQ) because the calculations for COQ demand all quality cost elements. 

3. Removing preparation and execution costs would make it impossible to compare testing against 

formal inspections, because inspections do record preparation and execution as well as defect 

repairs. 

Backing out or removing preparation and execution costs would be like going on a low-carb diet and not 

counting the carbs in pasta and bread, but only counting the carbs in meats and vegetables.  The numbers 

might look good, but the results in real life would not be good. 

 

The bottom line is that cost per defect penalizes quality and makes buggy applications look better than they 

are because their cost per defect is lower.  Cost per defect also makes early defects look cheaper than late 

defects and has led to the urban legend that “it costs 100 times as much to fix a bug after release than early 

in development.” 

 
Even worse, the true value of quality is not merely lowering defect repairs, but getting software out earlier, 

shortening development schedules, lowering maintenance costs, and having happier customers.  

 

Cost per defect includes a hidden assumption that software will always contain many defects.  In the future 

if software is constructed from collections of certified reusable components at the zero defect level there 

will still be costs for static analysis, critical feature inspection, and testing.  Cost per defect does not 

envision or support zero-defect software. 

 

In real life there are variations in defect discovery and repair costs.  There are “abeyant defects” that 

sometimes take weeks to find and repair.  What is needed is a more granular form of analysis that shows 

defect repairs by origin and the effort for finding and fixing bugs that originate in requirements, design, 
code, or other sources such as text materials and test cases. 

 

Cost per defect has blinded the software industry to the true economic value of software and led to the false 

assumption that “high quality is expensive.”  High quality for software is not expensive, and in fact is much 

cheaper and faster to develop high quality software than buggy software. 

 

The Errors and Hazards of Lines of Code (LOC) 

 

The “lines of code” or LOC metric has been in continuous use since the 1960’s.  Most users of LOC 

metrics have never studied the behavior of this metric across multiple languages.   



 5 

As with the cost per defect metric, the LOC of code metric ignores fixed costs.  The mathematical result is 

that low-level languages such as assembly and C seem to be cheaper and of higher quality than modern 

high-level languages such as Ruby and MySQL. 

 

Let us consider two different languages to see what happens and why LOC metrics are so harmful to 

economic studies.  We will consider the C language and the Java language as examples in table 2.  We will 
assume that it takes twice as much C code as Java code for a specific application: 

 

Table 3:  Quality Distortion caused by KLOC Metrics 

     

  C  Java 

  Language  Language 

  2000  1000 

  LOC  LOC 

  (2 KLOC)  (1 KLOC) 

     

Defect Sources Defects  Defects 

     

Requirements  10  10 

     

Design  20  20 

     

Source code 30  15 

     

Documents 3  3 

     

Bad fixes  2  2 

     

TOTAL  65  50 

     

 32.50  50.00 Defects 

per KLOC     

     

 3.25  2.50 

    

Defects Per 

Function Point 

    

 

Note that when data is normalized using “defects per KLOC” and all defect sources are included, the 

lower-level C language has fewer defects per KLOC.  This is true even though the C version had 65 total 

defects and the Java version had only 50. 

Even if only code defects are considered, there is still a distortion of results with LOC metrics.  Code 

defects for both Java and C are exactly 15 per KLOC even though the C version had twice as many bugs. 

LOC metrics have some legitimate uses, but they are not valid for software economic analysis and indeed 

should be considered to be professional malpractice for that purpose.  LOC metrics can be used to examine 

coding speed, cyclomatic complexity, numbers of test cases, test coverage, and a number of ancillary 

topics.  But LOC metrics are not suitable for economic studies. 

The more languages that are included the worse LOC metric become.  Following is Table 3.1 from an 

earlier study that compared 10 languages used for versions of a PBX switching system: 



 6 

Table 3.1:  Productivity Rates for 10 Versions of the Same Software Project 

(A PBX Switching system of 1,500 Function Points in Size) 

       

 
Language 

Effort 

(Months)  

  

Funct. Pt. 

per Staff 

Month 

Work Hrs. 

per 

Funct. Pt. 

LOC per 

Staff 

Month 

LOC per 

Staff 

Hour  

       

Assembly 781.91 1.92 68.81 480 3.38  

C 460.69 3.26 40.54 414 3.13  

CHILL 392.69 3.82 34.56 401 3.04  

PASCAL 357.53 4.20 31.46 382 2.89  

PL/I 329.91 4.55 29.03 364 2.76  

Ada83 304.13 4.93 26.76 350 2.65  

C++ 293.91 5.10 25.86 281 2.13  

Ada95 269.81 5.56 23.74 272 2.06  

Objective C 216.12 6.94 19.02 201 1.52  

Smalltalk 194.64 7.71 17.13 162 1.23  

       

Average 360.13 4.17 31.69 366 2.77  

 

As can be seen, LOC metrics totally reverse real economic productivity and makes the most labor-intensive 

version using assembly language look faster than the most efficient version that used Smalltalk!   

This is a textbook example of LOC as professional malpractice.  This table comes from an actual 

consulting study where developers at a telecommunications company wanted to adopt object-oriented 

languages but management resisted because their internal LOC data made low-level languages look more 

productive than high-level languages! 

It is a well-known law of manufacturing economics that when a manufacturing cycle has a high proportion 

of fixed costs and there is a reduction in the number of units manufactured, the cost per unit will go up.   

If a “line of code” is selected as the manufacturing unit and there is a switch from a low-level language to a 

high-level language, the number of units will decrease.  But the fixed costs of paperwork in requirements 

and specifications will not decrease.  Therefore cost per line of code will always go up in direct proportion 

to the level of the language, with the very best languages looking the worst! 

The costs of requirements, design, and other non-coding tasks on modern systems are often more expensive 

than the code itself.  Of the five major cost drivers for software, LOC metrics can only be used for one.  

The five major cost elements are:   

Table 4:  Major Software Cost Drivers 2012 

      

  Activities  

% 

of Costs 

1 Finding and fixing bugs  30.00% 

2 Coding or programming  25.00% 

3 Producing paper documents  20.00% 

4 Meetings and communications  15.00% 

5 Project management  10.00% 

   TOTAL   100.00% 



 7 

LOC metrics have supplemental purposes for software projects, but should never be the primary metric for 

economic analysis. 

The Errors and Hazards of Technical Debt 

The concept of technical debt is the newest of the quality metrics, having first been described by Ward 

Cunningham in a 1992 paper.  From that point on, the concept went viral and is now one of the most 

common quality metrics in the United States and indeed the world. 

The essential idea of technical debt is that mistakes and errors made during development that escape into 

the real world when the software is released will accumulate downstream costs to rectify. 

In a sense technical debt tends to piggyback on the “cost per defect” metric with an implied assumption that 

post-release defects and changes have higher costs than internal defects and changes. 

As a metaphor or general concept the idea of technical debt is attractive and appealing.  For one thing it 

makes software quality appear to take on some of the accumulated wisdom of financial operations, 

although the true financial understanding of the software industry is shockingly naive. 

However technical debt suffers from the same problems as cost per defect and lines of code:  it ignores 

fixed costs.  It has other and much more serious problems that are not intrinsic, but have come to be 

unfortunately common. 

A major problem with technical debt is that it ignores pre-release defect repairs, which are the major cost 

driver of almost all software applications.  Ignoring pre-release defect repairs is a serious deficiency of 

technical debt. 

Second, what happens after software is released to the outside world is not identical to the way software is 

developed.  You need to support released software with customer support personnel who can handle 

questions and bug reports.  And you also need to have maintenance programmers standing by to fix bugs 

when they are reported. 

This means that even software with zero defects and very happy customers will accumulate post-release 

maintenance costs that are not accounted for by technical debt.  Let us assume you release a commercial 

software application of 1,000 function points or 50,000 lines of Java code. 

Prior to release you have trained 2 customer support personnel who are under contract and you have 1 

maintenance programmer on your staff assigned to the new application.  Thus even with zero defects you 

will have post-release costs of perhaps $15,000 per month.   

After several months you can reassign the maintenance programmer and cut back to 1 customer support 

person, but the fact remains is that even zero-defect software has post-release costs. 

The third and most serious flaw with technical debt concerns the 50% failure rate of large systems in the 

range of 10,000 function points or 500,000 Java statements in size.  If an application of this size is 

cancelled and not released at all, then technical debt will of course be zero.  But a company could lose 

$25,000,000 on a project that was terminated due to poor quality! 

Yet another omission from the calculations for technical debt are the costs of litigation and punitive 

damages that might occur if disgruntled clients sue a vendor for poor quality. 



 8 

Here is an example from an actual case.  The shareholders of a major software company sued company 

management for releasing software of such poor quality that the shareholders claimed that poor quality was 

lowering the stock price. 

Clearly the defects themselves would accumulate technical debt, but awards and punitive damages based on 

litigation are not included in technical debt calculations.  In some cases, litigation costs, fines, and awards 

to the plaintiff might be high enough to bankrupt a software company. 

This kind of situation is not included in the normal calculations for technical debt, but it should be.  In other 

words, if technical debt is going to become a serious concept as is financial debt, then it needs to 

encompass every form of debt and not just post-release changes.  It needs to encompass the high costs of 

cancelled projects and the even higher costs of losing major litigation for poor quality. 

To illustrate that technical debt is only a partial measure of quality costs, Table 4 compares technical debt 

with cost of quality (COQ).  As can be seen, technical debt only encompasses about 13% of the total costs 

of eliminating defects. 

Note also that, while technical debt is shown as $86,141, right above this cost are the much higher costs of 

$428,625 for pre-release quality and defect repairs.  These pre-release costs are not included in technical 

debt! 

Just below technical debt are costs of $138,833 for fixed overhead costs of having support and maintenance 

people available.  These overhead costs will accrue whether maintenance and support personnel are dealing 

with customer calls, fixing bugs, or just waiting for something to happen.  Even with zero-defect software 

with zero technical debt there will still be overhead costs.  These overhead costs are not included in 

technical debt, but are included in cost of quality (COQ). 

Table 4: Technical Debt Compared to Cost of Quality (COQ) 

(1000 function points and 50,000 Java statements) 

  Defects  

    

Code defect potential                       1,904   

Req. & design def. pot.                       1,869   

Total Defect Potential                       3,773   

Per function point                         3.77   

Per KLOC                       70.75   

    

Defect Prevention Efficiency Remainder Costs 

JAD 23%                      2,924  $37,154 

QFD 0%                      2,924  $0 

Prototype 20%                      2,340  $14,941 

Models 0%                      2,339  $0 

Subtotal 38%                      2,339  $52,095 

    

Pre-Test Removal Efficiency Remainder Costs 

Desk check 25%                      1,755  $19,764 

Static analysis 55%                         790  $20,391 

Inspections 0%                         790  $0 

Subtotal 66%                         790  $40,155 

    



 9 

Test Removal Efficiency Remainder Costs 

Unit 30%                         553  $35,249 

Function 33%                         370  $57,717 

Regression 12%                         326  $52,794 

Component 30%                         228  $65,744 

Performance 10%                         205  $32,569 

System 34%                         135  $69,523 

Acceptance 15%                         115  $22,808 

Subtotal 85%                         115  $336,405 

    

   Costs 

PRE-RELEASE COSTS   $428,655 

POST-RELEASE REPAIRS  (TECHNICAL DEBT) $86,141 

MAINTENANCE OVERHEAD   $138,833 

COST OF QUALITY (COQ)    $653,629 

    

Defects delivered                          115   

High severity                            22   

Security flaws                            10   

High severity %  18.94%  

 

Even worse, if a software application is cancelled before release due to poor quality, it will have zero 

technical debt costs but a huge cost of quality. 

An “average” project of 10,000 function points in size will cost about $20,000,000 to develop and about 

$5,000,000 to maintain for 5 years.  About $3,000,000 of the maintenance costs will be technical debt.   

But if a project of the same size is cancelled, they are usually late and over budget at the point of 

termination, so they might cost $26,000,000 that is totally wasted as a result of poor quality.  Yet technical 

debt would be zero since the application was never released. 

The bottom line is that the use of technical debt is an embarrassing revelation that the software industry 

does not understand basic economics.  Cost of quality (COQ) is a better tool for quality economic study 

than technical debt. 

The Benefits of Function Point Metrics for Data Normalization 

Function point metrics were developed Allan Albrecht and his colleagues at IBM and placed in the public 

domain in 1978.  The International Function Point Users Group (IFPUG) took over the counting rules and 

function point training, and has grown into the largest measurement association in the world with affiliates 

in 24 countries. 

In recent years a number of function point “clones” have been developed which differ slightly in counting 

rules.  Among the many variants are COSMIC function points, FISMA function points, NESMA function 

points, function points light, engineering function points, feature points, and backfired function points. 

There are also a number of specialized metrics that use some of the logic of function point analysis but mix 

in other counting rules.  Two of the more common variants are use-case points and story points.  Table 5 

shows the comparative sizes of 15 functional metrics circa 2012: 

 



 10 

Table 5:  Comparative Sizes of Functional Metrics Circa 2012 

    

 Functional Metrics Size % of IFPUG 

1 IFPUG function points 1,000 100.00% 

2 Backfired function points 1,000 100.00% 

3 Cosmic function points 1,143 114.29% 

4 Fast function points 970 97.00% 

5 Feature points 1,000 100.00% 

6 FISMA function points 1,020 102.00% 

7 Full function points 1,170 117.00% 

8 Function points light 965 96.50% 

9 Mark II function points 1,060 106.00% 

10 NESMA function points 1,040 104.00% 

11 RICE objects 4,714 471.43% 

12 SNAP non functional metrics 235 23.53% 

13 Story points 556 55.56% 

14 Unadjusted function points 890 89.00% 

15 Use case points 333 33.33% 

 

In 2011, IFPUG issued new counting rules for non-functional size elements such as quality, performance, 

and the like.  These are called “SNAP metrics” and are too new to have much empirical data. 

The reason that IBM spent several million dollars inventing function points and the reason that function 

points are the most widely used metric in the world is that they actually demonstrate standard economic 

concepts.  Function points can be used to normalize data in a fashion that matches standard economic 

assumptions. 

Recall that Table 1 showed a significant increase in cost per defect throughout the testing cycle.  This is the 

basis for the urban legend that it costs 100 times more to fix a bug after release than before. 

Let us revisit the underlying data from Table 1 and see what happens when we normalize defect removal 

effort using cost per function point instead of cost per defect.  Table 6 uses exactly the same effort used in 

Table 1: 

• Writing test cases takes 16.5 hours for every test stage; 

• Running test cases takes 9.9 hours for every test stage; and 

• Defect repair takes 5.0 hours for every defect found. 

 

Table 6 shows the results normalized using function points instead of cost per defect (but the underlying 

effort is identical in the two tables): 

Table 6  Cost per Function Point for Six Forms of Testing 

(Assumes $75.75 per staff hour for costs) 

 

 

Writing 

Test Cases 

Running 

Test Cases 

Repairing 

Defects 

TOTAL $ 

PER F.P. 

Number of 

Defects 

      

Unit test $12.50 $7.50 $189.38 $209.38 50 

      

Function test $12.50 $7.50 $75.75 $95.75 20 

      



 11 

Regression test $12.50 $7.50 $37.88 $57.88 10 

      

Performance test $12.50 $7.50 $18.94 $38.94 5 

      

System test $12.50 $7.50 $11.36 $31.36 3 

      

Acceptance test $12.50 $7.50 $3.79 $23.79 1 

 

Notice the complete reversal of costs when function point metrics are used.  Instead of becoming more 

expensive when few bugs found, defect removal costs per function point steadily decline as fewer and 

fewer bugs are found! 

In other words defect repairs do not increase over time, they become cheaper over time.  Table 6 is nothing 

more than the data from Table 1 with normalization based on cost per function point. 

For the first time using function points, it is possible to actually study the economics of software quality in 

a fashion that matches standard economic assumptions, instead of distorting standard economic 

assumptions.  This is why functional metrics are so powerful: they reveal real economic facts that are 

hidden by cost per defect, lines of code, and technical debt. 

This article is based on IFPUG function points, but the same logic applies to COSMIC, FISMA, NESMA, 

and all the other function point variants.  The only caveat is that the others will produce slightly different 

results. 

The slow speed and high costs of manual function point counting have lowered the acceptance of these 

powerful metrics.  As of 2012, several high-speed and low-cost function point methods are available that 

can reduce the costs of counting function points from more than $5.00 per function point counted down 

below $0.01 per function point counted.  Within a few years these high-speed methods should make 

function points an industry standard. 

The Benefits of Defect Removal Efficiency (DRE) 

The most powerful and useful quality metric ever developed is that of “defect removal efficiency” (DRE).  

The reason for this claim is that improvements in DRE bring with them improvements in software 

schedules, software development costs, software maintenance costs, customer satisfaction, team morale, 

and stakeholder satisfaction.  In other words, DRE is the central metric around which process 

improvements pivot. 

DRE metrics were first developed inside IBM in the early 1970’s as a method of evaluating the 

effectiveness of software inspections compared to software testing.  As DRE usage expanded, it was found 

that DRE is perhaps the single most important software metric, because it is the best indicator of project 

health and also of development speed, costs, customer satisfaction, and quality.   

Projects with DRE below 85% will always run late, will always be over budget, and will never have happy 

customers.  On the other hand, projects with DRE above 95% will usually be on time, usually be under 

budget and usually have happy customers.  No metric is perfect, but DRE is the best indicator of project 

health ever devised. 

Defect removal efficiency is not too difficult to measure, nor is it an expensive metric.  The essential math 

of DRE is to accumulate counts of all bugs during development.  Then after 90 days of customer use, 

aggregate user defect reports with internal defect reports and calculate the percentage of bugs removed 

prior to release. 



 12 

For example if your development team found 95 bugs before release and users reported 5 bugs in the first 

three months of usage, then DRE is obviously 95%.   

(One caveat is that the International Software Benchmark Standards Group (ISBSG) uses only 30 days of 

customer usage in calculating DRE.  Therefore, they always have higher DRE numbers than the author 

because 30 days of usage only reports about 20% of the bug volumes found in 90 days.  Why ISBSG chose 

30 days in unknown, since IBM and other companies have been using 90-day DRE measures since the 

early 1970’s and the bulk of all published studies of DRE are based on 90 day windows.) 

Table 7 illustrates two scenarios.  Case A shows low quality without the use of pre-test inspections and 

static analysis.  Case B shows high quality that includes the use of pre-test inspections and static analysis.  

Both Case A and Case B start with a defect potential of 1,000 defects.  Case A uses only a standard 

sequence of testing.  Case B uses pre-test static analysis and pre-test inspections before testing starts: 

Table 7: Examples of High and Low Defect Removal Efficiency 

       

     

     

  

Case A 

Low Quality 
  

Case B 

High Quality 
 

       

Defect Potential  1,000   1,000 

  Efficiency   Efficiency  

Pre-Test Removal      

Static analysis 0.00% 1,000  60.00% 400 

Pre-Test inspection 0.00% 1,000  85.00% 60 

       

Test Removal      

Unit test  25.00% 750  30.00% 42 

Function test 27.00% 548  33.00% 28 

Regression test 25.00% 411  30.00% 20 

Performance test 12.00% 361  17.00% 16 

Component test 33.00% 242  37.00% 10 

System test 35.00% 157  40.00% 6 

Acceptance test 15.00% 134  15.00% 5 

       

Delivered defects  134   5 

DRE  86.60%    99.50% 

 

Note that pre-test inspections have a secondary benefit of raising testing efficiency levels.  This is why 

testing efficiency is higher in Case B than in Case A. 

Readers might think that while it is good to achieve high levels of defect removal efficiency, the costs 

might be prohibitive.  This is a major economic misunderstanding by the software industry.  High quality is 

not expensive.  High quality is cheaper than low quality because testing costs are greatly reduced by pre-

test inspections and static analysis.  Table 8 show an approximate cost comparison of the differences 

between Case A and Case B: 

 

 



 13 

Table 8: Cost Comparison of Low Quality and High Quality 

    

    

  

Case A 

Low Quality 
 

Case B 

High Quality 
 

      

Pre-Test Removal     

Static analysis $0  $5,000  

Pre-test inspection $0  $50,000  

      

Test Removal     

Unit test  $25,000  $10,000  

Function test $25,000  $15,000  

Regression test $10,000  $5,000  

Performance test $10,000  $5,000  

Component test $20,000  $15,000  

System test $25,000  $10,000  

Acceptance test $10,000  $5,000  

      

Total Cost $125,000  $120,000  

 

In spite of the fact that pre-test inspections cost $50,000 the total cost of quality for the high-quality Case B 

is $5,000 less than the total cost of quality for the poor quality Case A. 

The economic cost savings that accrue from high quality and high DRE cannot be measured using the three 

bad metrics of cost per defect, lines of code, and technical debt.  But they can be measured using the 

combination of the two good metrics, function points and defect removal efficiency (DRE). 

DRE is the most critical metric in all of software because it is the lynch pin of process improvements.  

Effective process improvement will raise DRE well above 95%.  In fact a synergistic combination of pre-

test static analysis, pre-test inspections, and formal mathematically-based testing can top 99% in DRE.  

Any methodology that does not measure and seek to improve DRE is essentially ineffective. 

Software Metrics Research Laboratories and Research Tools 

Ideally every proposed metric would be formally evaluated at a metrics research facility at a university or 

non-profit think tank.  Unfortunately, software metrics just pop up like mushrooms after a rain without any 

formal evaluation or examination under controlled conditions.   

To improve the rigor of metrics study, the author and Namcook Analytics LLC have built a metrics 

research tool.  This tool, Software Risk Master™ (SRM) allows metrics to be evaluated under controlled 

conditions.  For example SRM supports side-by-side analysis of cost per defect, function points, lines of 

code, technical debt, and DRE for the same application. 

Users have the ability to specify exact quantities of defects in requirements, design, code, user documents, 

and bad fixes.  Then they can follow both defect prevention and defect removal through any possible 

sequence of inspections, static analysis, and testing.  Several of the tables in this report are taken from 

Software Risk Master™. 

As defects are removed, costs are normalized using function points, cost per defect, lines of code in the 

KLOC format, and technical debt and the results are shown in a side-by-side format.  This makes it easy to 

examine each metric in turn.  Other metrics such as story points and use-case points can also be used.   



 14 

The tool can also show the results of 32 different kinds of methodologies such as Agile, XP, pair-

programming, RUP, TSP, EVO, Prince2, Merise, waterfall, modeling, iterative, spiral, etc. 

Table 9 illustrates what some of the data looks like from a detailed Software Risk Master™ analysis.  This 

only shows a few sample pre-test activities because a full analysis is too large for this article: 

Table 9: Defect Repair Costs by Origin and Activity 

      

 

 

 

 

Require. 

Defects per 

Function Point 

Design 

Defects per 

Function Point 

Code 

Defects per 

Function Point 

Document 

Defects per 

Function Point 

TOTALS 

      
Defect Potentials per 

FP 0.24 0.53 1.17 0.13 2.07 

Defect potentials                 181                399                874                     96  1,550 

Percent of total defects 11.67% 25.75% 56.39% 6.19% 100.00% 

      

Security 

Vulnerabilities 0 0 1 0 1 

      

      

PRE-TEST 

REMOVAL      

METHODS      

 

 

Require. 

Efficiency 

Design 

Efficiency 

Code 

Efficiency 

Document 

Efficiency 

Total 

Efficiency 

      

Text static analysis 50.00% 50.00% 0.00% 50.00% 21.81% 

Defects discovered 90 200 0 48 338 

Bad-fix injection 3 6 0 1 10 

Defects remaining                   93                206                874                     49  1,222 

      

Team size     2.50 

Schedule (months)     0.16 

      

Defect logging, routing $85 $187 $0 $45 $317 

Set up and running $263 $263 $0 $263 $788 

Defect repairs $707 $1,559 $0 $375 $2,641 

Repair integration/test $57 $125 $0 $30 $211 

Text static cost $1,110 $2,134 $0 $713 $3,957 

      

$ per function point $1.48 $2.85 $0 $0.95 $5.28 

$ per KLOC $27.76 $53.34 $0 $17.82 $98.92 

$ per defect $12.28 $10.69 $0 $14.84 $11.70 

      

Requirements 

inspection 87.00% 10.00% 1.00% 8.50% 7.39% 

Defects discovered 81 21 9 4 115 

Bad-fix injection 2 1 0 0 3 

Defects remaining                   15                186                866                     45        1,111  

      



 15 

Team size     4.88 

Schedule (months)     0.97 

      

Defect logging, routing $1,013 $257 $109 $39 $1,419 

Preparation/inspections $8,203 $7,031 $5,859 $3,516 $24,609 

Defect repairs $12,664 $3,212 $628 $289 $16,794 

Repair integration/test $2,786 $707 $301 $145 $3,938 

Req. inspection cost $24,667 $11,207 $6,897 $3,989 $46,760 

      

$ per function point $32.89 $14.94 $9.20 $5.32 $62.35 

$ per KLOC $616.67 $280.18 $172.44 $99.71 $1,169.01 

$ per defect $304.33 $545.12 $789.00 $948.78 $408.18 

      

Design inspection 40.00% 87.00% 7.00% 26.00% 21.57% 

Defects discovered 6 162 61 12 240 

Bad-fix injection 0 5 2 0 12 

Defects remaining 9 29 807 34 879 

      

Team size     4.88 

Schedule (months)     1.33 

      

Defect logging, routing $73 $2,019 $758 $111 $2,960 

Preparation/inspections $7,031 $8,203 $4,688 $2,344 $22,266 

Defect repairs $909 $25,237 $4,734 $369 $31,249 

Repair integration/test $273 $5,047 $1,894 $553 $7,767 

Design inspection cost $8,286 $40,506 $12,073 $3,376 $64,241 

      

$ per function point $11.05 $54.01 $16.10 $4.50 $85.66 

$ per KLOC $207.14 $1,012.66 $301.83 $84.40 $1,606.03 

$ per defect $1,424.34 $250.79 $199.23 $286.14 $267.97 
 

As can be seen costs are accumulated for defects from requirements, design, code, documents, and bad 

fixes.  The details of defect removal costs are also very granular.  A total of about 200 different forms of 

defect prevention, pre-test inspection, pre-test static analysis, and many kinds of testing can be evaluated in 

any combination and the results shown in absolute costs, and then normalized using cost per defect, cost 

per KLOC, and cost per function point. 

Controlled results using the Software Risk Master™ tool show the hazards of the three bad metrics.   The 

results indicate that cost per defect rise steadily and of course rises to infinity for zero-defect results.  These 

results clearly violate standard economics. 

The costs per line of code for defect removal are cheapest for assembly language and rise steadily when 

newer and more powerful languages are used such as Java, Ruby, Perl, Objective C, Smalltalk, and the like.  

Here too the results violate standard economics because defects are less numerous and repairs are cheaper 

with modern languages.  In day to day usage LOC metrics also make requirements and design defects 

invisible. 

For technical debt, the large costs of pre-release defect removal and the overhead costs of customer support 

and change teams are not included, so technical debt covers only a small percentage of cost of quality.  For 

canceled projects that are not released due to poor quality, technical debt is zero in spite of huge losses. 



 16 

With functional metrics, standard economics finally arrive in the software world and the true reduction in 

costs with better quality becomes visible.  Functional metrics also work for pre-release defects and for 

overhead costs and even for canceled projects and litigation damages. 

Simultaneous results are shown for all of these major metrics. Additional metrics such as use-case points 

and story points can also be tested in side-by-side form. But for the purposes of this article, SRM can be 

used to demonstrate the economic distortions of the three bad metrics using identical defect volumes and 

controlled sequences of defect removal activities. 

Summary and Conclusions about Software Quality Metrics 

For more than 60 years, the software industry has lacked solid economic understanding of basic topics such 

as cost of quality and defect removal costs.  The three bad metrics cited in this article distort economic 

reality and give the false impression that software quality is expensive, when in fact high quality is cheaper 

than poor quality. 

In order to create valid economic models of software development, maintenance, and quality control it is 

urgent to have accurate measurements that use accurate metrics.  The industry cannot afford the gaps and 

errors of bad metrics such as cost per defect, lines of code, and technical debt. 

The combination of function point metrics combined with defect removal efficiency metrics (DRE) can 

show the true cost of quality and illustrate the fact that achieving high quality is the most cost-effective way 

to build software. 

References and Readings on Software Quality and Software Metrics 

Boehm, Barry Dr.; Software Engineering Economics; Prentice Hall, Englewood Cliffs, NJ; 1981; 900 
pages. 

 

Booch Grady, Object Solutions: Managing the Object-Oriented Project; Addison Wesley, Reading, MA; 

1995. 

 

Bundschuh, Manfred and Dekkers, Carol; The IT Measurement Compendium; Springer; Berlin; 2008. 

 

Capability Maturity Model Integration; Version 1.1; Software Engineering Institute; Carnegie-Mellon 

Univ.; Pittsburgh, PA; March 2003; http://www.sei.cmu.edu/cmmi/ 

 

Brooks, Fred: The Mythical Man-Month, Addison-Wesley, Reading, Mass., 1974, rev. 1995. 

 
Charette, Bob; Software Engineering Risk Analysis and Management; McGraw Hill, New York, NY; 1989. 

 

Charette, Bob; Application Strategies for Risk Management; McGraw Hill, New York, NY; 1990. 

 

Cohn, Mike; Agile Estimating and Planning; Prentice Hall PTR, Englewood Cliffs, NJ; 2005; ISBN 

0131479415. 

 

DeMarco, Tom; Controlling Software Projects; Yourdon Press, New York; 1982; ISBN 0-917072-32-4; 

284 pages. 

 

Ebert, Christof and Dumke, Reiner; Software Measurement: Establish, Extract, Evaluate, Execute; 
Springer, Berlin; 2007. 

 

Ewusi-Mensah, Kweku;  Software Development Failures; MIT Press, Cambridge, MA; 2003; ISBN 0-

26205072-2276 pages. 

 



 17 

Gack, Gary; Managing the Black Hole – The Executives Guide to Project Risk; The Business Expert 

Publisher; Thomson, GA; 2010; ISBSG10: 1-935602-01-2. 

 
Galorath, Dan; Software Sizing, Estimating, and Risk Management:  When Performance is Measured 

Performance Improves;  Auerbach Publishing, Philadelphia; 2006; ISBN 10: 0849335930; 576 pages. 

 

Garmus, David and Herron, David; Function Point Analysis – Measurement Practices for Successful 

Software Projects; Addison Wesley Longman, Boston, MA; 2001; ISBN 0-201-69944-3;363 pages. 

 

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading, MA;  1993; ISBN 10: 

0201631814. 

 

Glass,  R.L.; Software Runaways:  Lessons Learned from Massive Software Project Failures;  Prentice 
Hall, Englewood Cliffs; 1998. 

 

Harris, Michael; Herron, David, and Iwaniciki, Stacia; The Business value of IT; Auerbach; 2008. 

 

Hill, Peter R.  Practical Software Project Estimation; McGraw Hill, 2010 

 

Harris, Michael; Herron, David; and Iwanicki, Stacia; The Business Value of IT: Managing Risks, 

Optimizing Performance, and Measuring Results; CRC Press (Auerbach), Boca Raton, FL: ISBN 13: 

978-1-4200-6474-2; 2008; 266 pages. 

 

Humphrey, Watts; Managing the Software Process; Addison Wesley, Reading, MA; 1989. 
 

Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality; Addison Wesley, 2011; ISBN 

978-0-13-258220-9; 57 pages. 

 

 Jones, Capers; Software Engineering Best Practices; McGraw Hill, 2009; ISBN 97800-07-162161-8; 660 

pages.  

 

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN 978-0-07-150244-3; 

668 pages; 3rd edition (March 2008). 

 

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2nd edition, 2007; 644  pages; 

ISBN13: 978- 0-07-148300-1. 
 

Jones, Capers; “Estimating and Measuring Object-Oriented Software”; American Programmer; 1994. 

 

Jones, Capers; “Why Flawed Software Projects are not Cancelled in Time”; Cutter IT Journal; Vol. 10, No. 

12; December 2003; pp. 12-17. 

 

Jones, Capers; “Software Project Management Practices:  Failure Versus Success”; 

Crosstalk, Vol. 19, No. 6; June 2006; pp4-8. 

 

 Jones, Capers;  Software Assessments, Benchmarks, and Best Practices; Addison Wesley Longman, 

Boston, MA, 2000; 659 pages. 
 

Jones, Capers;  Software Quality – Analysis and Guidelines for Success; International Thomson Computer 

Press, Boston, MA; ISBN 1-85032-876-6; 1997; 492 pages. 

 

Jones, Capers; Patterns of Software System Failure and Success;  International Thomson Computer Press, 

Boston, MA;  December 1995; 250 pages; ISBN 1-850-32804-8; 292 pages. 

 

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994;  ISBN 0-13-741406-4; 711 

pages. 

 



 18 

Jones, Capers;  Conflict and Litigation Between Software Clients and Developers; Version 10; Software 

Productivity Research, Burlington, MA; June 2009; 54 pages. 

 

Jones, Capers; A New Business Model for Function Points; Version 1.0; Capers Jones & Associates LLC; 

Narragansett, RI; June 2009; 40 pages. 

 
Jones, Capers; A Short History of Lines-of-Code Metrics; Capers Jones & Associates LLC; Narragansett, 

RI; September 2009; 20 pages. 

 

Jones, Capers; A Short History of Cost per Defect Metrics; Capers Jones & Associates LLC, Narragansett, 

RI; October 2009; 22 pages. 

 

Jones, Capers: “Sizing Up Software;” Scientific American Magazine, Volume 279, No. 6, December 1998; 

pages 104-111. 

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;  Addison Wesley 

Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages. 

 

McConnell; Software Estimating: Demystifying the Black Art; Microsoft Press, Redmund, WA; 2006. 

 
Laird, Linda M and Brennan, Carol M; Software Measurement and Estimation: A Practical Approach; John 

Wiley & Sons, Hoboken, NJ; 2006; ISBN 0-471-67622-5; 255 pages. 

 

Park, Robert E. et al; Software Cost and Schedule Estimating - A Process Improvement Initiative; 

Technical Report CMU/SEI 94-SR-03; Software Engineering Institute, Pittsburgh, PA; May 1994. 
 

Park, Robert E. et al; Checklists and Criteria for Evaluating the Costs and Schedule Estimating Capabilities 

of Software Organizations; Technical Report CMU/SEI 95-SR-005; Software Engineering Institute, 

Pittsburgh, PA; January 1995. 

 

Pressman, Roger; Software Engineering – A Practitioner’s Approach; McGraw Hill, NY; 6th edition, 2005; 

ISBN 0-07-285318-2. 

 

Radice, Ronald A.; High Quality Low Cost Software Inspections;  Paradoxicon Publishing Andover, MA; 

ISBN 0-9645913-1-6; 2002; 479 pages. 

 

Royce, Walker; Software Project Management: A Unified Framework; Addison Wesley, Reading, MA; 
1998. 

 

Roetzheim, William H. and Beasley, Reyna A.; Best Practices in Software Cost and Schedule Estimation; 

Prentice Hall PTR, Saddle River, NJ; 1998. 

 

Strassmann, Paul; Information Productivity; Information Economics Press, Stamford, Ct; 1999. 

 

Strassmann, Paul; Information Payoff; Information Economics Press, Stamford, Ct; 1985. 

 

Strassmann, Paul; Governance of Information Management: The Concept of an Information Constitution; 

2nd edition; (eBook); Information Economics Press, Stamford, Ct; 2004. 
 

Strassmann, Paul; The Squandered Computer; Information Economics Press, Stamford, CT; 1997. 

 

Stukes, Sherry, Deshoretz, Jason, Apgar, Henry and Macias, Ilona; Air Force Cost Analysis Agency 

Software Estimating Model Analysis ;  TR-9545/008-2; Contract F04701-95-D-0003, Task 008; 

Management Consulting & Research, Inc.; Thousand Oaks, CA 91362; September 30 1996. 

 

Symons, Charles R.: Software Sizing and Estimating—Mk II FPA (Function Point Analysis), John Wiley 

& Sons, Chichester, U.K., ISBN 0-471-92985-9, 1991. 



 19 

 

Wellman, Frank, Software Costing: An Objective Approach to Estimating and Controlling the Cost of 

Computer Software, Prentice Hall, Englewood Cliffs, NJ, ISBN 0-138184364, 1992. 

 

Whitehead, Richard; Leading a Development Team; Addison Wesley, Boston, MA; 2001; ISBN 10: 

0201675267; 368 pages. 
 

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide;  Addison Wesley Longman, Boston, MA; 

ISBN 0-201-73485-0; 2002; 232 pages. 

 

Various authors; The IFPUG Guide to IT and Software Measurement, Auerbach Publishers, April 2012; 

828 pages. 

  


