
Software Defect Removal Efficiency

By

Capers Jones, President
Capers Jones & Associates LLC

Email: CJonesiii@cs.com

Abstract

The most important contributor to the quality of software-intensive systems is the
quality of the software components. The most important single metric for software
quality is that of defect removal efficiency (DRE). The DRE metric measures the
percentage of bugs or defects found and removed prior to delivery of the software.
The current U.S. average in 2011 is only about 85% of total defects removed.
However, best in class projects can top 99% in defect removal efficiency. High levels
of DRE cannot be achieved using testing alone. Pre-test inspections and static
analysis are necessary to top 95% in defect removal efficiency.

Copyright 2011 by Capers Jones & Associates LLC. All rights reserved.

Introduction

In the 1970’s the author worked for IBM. Software applications were growing larger
and more complex so quality was becoming a serious issue. IBM began a careful
analysis of software quality. Measurements were taken of defects found in software
requirements, design documents, source code, user manuals, and also “bad fixes” or
secondary defects accidentally included in defect repairs.

At the same time IBM developed the function point metric, because it was necessary
to analyze non-coding defects and non-coding development activities as well. After
several years of data collection, it was possible to determine the relative contribution
of various defect origins on total software defects. The total number of defects from
all five sources was termed the “defect potential” of a software application.

Table 1 shows approximate U.S. averages from more than 13,000 projects. Table 1
shows the average volumes of defects found on software projects, and the average
percentage of defects removed prior to delivery to customers:

Table 1: Defect Removal Efficiency by Origin of Defects Circa 2011
(Data Expressed in Terms of Defects per Function Point)

 Defect Origins Defect Removal Delivered
 Potentials Efficiency Defects

 Requirements 1.00 77% 0.23

 Design 1.25 85% 0.19
 Coding 1.75 95% 0.09
 Document 0.60 80% 0.12
 Bad Fixes 0.40 70% 0.12
 Total 5.00 85% 0.75

Table 1 is an excerpt from the author’s book The Economics of Software Quality,
Addison Wesley, 2011.

There are of course fairly wide ranges. The maximum defect potential observed for
large applications of 10,000 function points is about 7.0 defects per function point. The
minimum number of defects observed for small projects below 1000 function points is
about 2.00 per function point. The maximum defect removal efficiency observed is
about 99% and the lowest is below 80%.

Both defect prevention and defect removal are important, but this article concentrates
on defect removal efficiency because it is a critical metric and fairly easy to measure.

Measuring Defect Removal Efficiency (DRE)

Serious software quality control involves measurement of defect removal efficiency
(DRE). Defect removal efficiency is the percentage of defects found and repaired prior
to release.

In principle the measurement of DRE is simple. Keep records of all defects found
during development. After a fixed period of 90 days, add customer-reported defects
to internal defects and calculate the efficiency of internal removal. If the development
team found 90 defects and customers reported 10 defects, then DRE is of course 90%.

(Note that the International Software Benchmark Standards Group (ISBSG) uses
release plus 30 days for DRE measures. This means that ISBSG DRE measures are
higher than the author’s due to the 30-day versus 90-day intervals.)

In real life DRE measures are tricky because of bad-fix injections, defects found
internally after release; defects inherited from prior releases; invalid defects; and other
complicating factors.

Raising Defect Removal Efficiency (DRE) Levels

Most forms of testing are less than 50% efficient in finding bugs or defects. However,
formal design and code inspections are more than 65% efficient in finding bugs or
defects and often top 85%.

Static analysis is also high in efficiency against many kinds of coding defects.
Therefore all leading projects in leading companies utilize formal inspections, static
analysis, and formal testing. This combination is the only known way of achieving
cumulative defect removal levels higher than 95% and approaching or exceeding 99%.

Table 2 illustrates the measured ranges of defect removal efficiency levels for a variety
of reviews, inspections, static analysis, and several kinds of test stages.

Table 2: Pre-Test and Test Defect Removal Efficiency Ranges

Pre-Test Defect Removal Minimum Average Maximum

Formal design inspections 65.00% 87.00% 97.00%

Formal code inspections 60.00% 85.00% 96.00%

Static analysis 65.00% 85.00% 95.00%

Formal requirement inspections 50.00% 78.00% 90.00%

Pair programming 40.00% 55.00% 65.00%

Informal peer reviews 35.00% 50.00% 60.00%

Desk checking 25.00% 45.00% 55.00%

Average 48.57% 69.29% 79.71%

Test Defect Removal Minimum Average Maximum

Experiment-based testing 60.00% 75.00% 85.00%

Risk-based testing 55.00% 70.00% 80.00%

Security testing 50.00% 65.00% 80.00%

Subroutine testing 27.00% 45.00% 60.00%

System testing 27.00% 42.00% 55.00%

External Beta testing 30.00% 40.00% 50.00%

Performance testing 30.00% 40.00% 45.00%

Supply-chain testing 20.00% 40.00% 47.00%

Cloud testing 25.00% 40.00% 55.00%

Function testing 33.00% 40.00% 55.00%

Unit testing (automated) 20.00% 40.00% 50.00%

Unit testing (manual) 15.00% 38.00% 50.00%

Regression testing 35.00% 35.00% 45.00%

Independent verification 20.00% 35.00% 47.00%

Clean-room testing 20.00% 35.00% 50.00%

Acceptance testing 15.00% 35.00% 40.00%

Independent testing 15.00% 35.00% 42.00%

Average 29.24% 44.12% 55.06%

The low defect removal efficiency levels of most forms of testing explain why the best
projects do not rely upon testing alone. The best projects utilize formal inspections
first, static analysis, of code, code inspections for key features, and then a multi-stage
testing sequence afterwards. This combination of inspections followed by static
analysis and testing leads DRE in the range of 95% to 99%/ It also leads to the
shortest overall development schedules, and lowers the probabilities of project
failures.

Low Quality Defect Removal Efficiency (DRE) Case Study

Table 3 is a simple case study that illustrates the typical results of four common forms
of testing: 1) Unit test; 2) Function test; 3) Regression test; 4) System test. Since
testing is not very efficient, the results are not very good. We will also assume a
traditional “waterfall” development method.

In this case study let us assume an application of 1,000 function points in size. Let us
also assume a defect potential of 5.0 defects per function points. This means that
total probable defects in the application will be 5,000. We will also assume that 7% of

defect repairs result in “bad fixes” or new defects. Table 3 illustrates a common pattern
of fairly low defect removal efficiency:

Table 3: Low Quality Defect Removal Efficiency (DRE) Example

Size (function points) = 1,000

Defect potential per function point = 5.00

Defects in application = 5,000

Bad-fix injection = 7.00%

 Defect Defect

 Removal Removal

 Efficiency Pattern

Unit test 38%

Defects found 1,900

Bad fixes 133

Defects remaining 2,967

Function test 40%

Defects found 1,187

Bad fixes 83

Defects remaining 1,780

Regression test 35%

Defects found 623

Bad fixes 44

Defects remaining 1,114

System test 42% 468

Defects found 33

Bad fixes 613

Defects remaining

TOTAL DEFECTS REMOVED 4,178

TOTAL BAD FIXES 292

TOTAL DEFECTS DELIVERED 613

HIGH-SEVERITY DEFECTS DELIVERED 110

DEFECT REMOVAL EFFICIENCY (DRE) 85.32%

DELIVERED DEFCTS PER FUNCTION POINT 0.61

The case study in table 3 achieved only 85.32% in cumulative defect removal
efficiency prior to delivery. This is because testing with no prior inspections or prior
static analysis is not usually sufficient to achieve high levels of defect removal
efficiency.

Table 3 is something of a professional embarrassment. No true engineering discipline
should deliver a product with only about 85% of known defects removed. But such
results are the norm for software applications.

High Quality Defect Removal Efficiency (DRE) Case Study

Because the example in table 3 was professionally embarrassing, let us see what
happens when formal inspections are used prior to testing. Let us also assume the
use of one of the more effective software development methods, Watts Humphrey’s
Team Software Process (TSP). With both TSP and inspections in use, these
advantages occur:

1. Defect potentials are reduced.
2. Defect removal efficiency levels are higher.
3. Bad fix injections are reduced.

In this second case study let us assume the same application size of 1,000 function
points. However let us also assume a defect potential of 4.5 defects per function
points due to TSP. This means that total probable defects in the application will be
4,500. We will also assume that only 3.5% of defect repairs result in “bad fixes” or
new defects as opposed to 7% in the prior example.

Table 4 illustrates the results of the new scenario which combines both an effective
development method with a more efficient defect removal pattern:

Table 4: High Quality Defect Removal Efficiency (DRE) Example

Size (function points) = 1,000

Defect potential per function point = 4.50

Defects in application = 4,500

Bad-fix injection = 3.50%

 Defect Defect

 Removal Removal

 Efficiency Pattern

Formal Inspections (Design, Code) 85%

Defects found 3,825

Bad fixes 134

Defects remaining 809

Unit test 42%

Defects found 340

Bad fixes 12

Defects remaining 457

Function test 45%

Defects found 206

Bad fixes 7

Defects remaining 251

Regression test 40%

Defects found 101

Bad fixes 4

Defects remaining 147

System test 47%

Defects found 69

Bad fixes 2

Defects remaining 76

TOTALDEFECTS REMOVED 4,540

TOTAL BAD FIXES 25

TOTAL DEFECTS DELIVERED 76

HIGH-SEVERITY DEFECTS DELIVERED 14

DEFECT REMOVAL EFFICIENCY (DRE) 98.33%

DELIVERED DEFCTS PER FUNCTION POINT 0.08

When the results of Table 3 are compared with the results of Table 4, we can see that
defect removal efficiency levels have climbed from an embarrassing 85.32% up to a
respectable 98.33%.

Not only were inspections very efficient in finding defects, but the combination of
inspections plus the formal Team Software Process also raised the efficiency level of
each test stage.

Removing 100% of software defects is almost impossible, but achieving defect
removal efficiency levels that are higher than 95% should be a minimum professional
requirement. In fact such levels of defect removal efficiency should probably be
included in software outsource contracts.

Summary and Conclusions

This article illustrates only four test stages plus formal inspections of design and code.
Some large systems use inspections of requirements, design, code, and test
materials. They also use static analysis tools prior to testing. In addition they may
use as many as a dozen test stages rather than the four shown here. This article is
intended to explain the basic principles of defect removal efficiency (DRE) but it does
not cover every possible combination and permutation.

Complete elimination of software defects is beyond the current state of the art.
However elevating levels of defect removal efficiency from today’s average of 85% up
to more than 95% can easily be achieved. It is only necessary to use a synergistic
combination of pre-test inspections, static analysis, and formal testing. But it is also
necessary to measure defect removal efficiency (DRE).

Measuring defect removal efficiency (DRE) measurement and topping 95% in
cumulative DRE are the signs of a top software production group. Companies that do
not measure DRE are usually well below 85% when the author has been called in for
an external quality benchmark study.

References and Readings

Gack, Gary; Managing the Black Hole: The Executives Guide to Software Project

Risk; Business Expert Publishing, Thomson, GA; 2010; ISBN10: 1-935602-01-9.

Galorath, Dan; Software Sizing, Estimating, and Risk Management: When

Performance is Measured Performance Improves; Auerbach Publishing,
Philadelphia; 2006; ISBN 10: 0849335930; 576 pages.

Garmus, David and Herron, David; Function Point Analysis – Measurement Practices

for Successful Software Projects; Addison Wesley Longman, Boston, MA; 2001;
ISBN 0-201-69944-3;363 pages.

Gilb, Tom and Graham, Dorothy; Software Inspections; Addison Wesley, Reading,

MA; 1993; ISBN 10: 0201631814.

Humphrey, Watts, TSP – Leading a Development Team; Addison Wesley, Boston,

MA; ISBN o-321-34962-8; 2006; 307 pages.

 Jones, Capers and Bonsignour, Olivier; The Economics of Software Quality;
Addison Wesley, Boston; 2011; ISBN 10: 0-13-258220-1;587 pages.

 Jones, Capers; Software Engineering Best Practices; McGraw Hill, New York, 2010;
ISBN 978-0-07-162161-8; 660 pages.

Jones, Capers; Applied Software Measurement; McGraw Hill, 3rd edition 2008; ISBN
978-0-07-150244-3; 668 pages; 3rd edition (March 2008).

Jones, Capers; Estimating Software Costs; McGraw Hill, New York; 2007; ISBN 13-

978-0-07-148300-1.

Jones, Capers; Software Assessments, Benchmarks, and Best Practices; Addison

Wesley Longman, Boston, MA; ISBN 0-201-48542-7; 2000; 657 pages.

Jones, Capers; Assessment and Control of Software Risks; Prentice Hall, 1994; ISBN

0-13-741406-4; 711 pages.

Kan, Stephen H.; Metrics and Models in Software Quality Engineering, 2nd edition;

Addison Wesley Longman, Boston, MA; ISBN 0-201-72915-6; 2003; 528 pages.

Radice, Ronald A.; High Quality Low Cost Software Inspections; Paradoxicon

Publishing Andover, MA; ISBN 0-9645913-1-6; 2002; 479 pages.

Wiegers, Karl E.; Peer Reviews in Software – A Practical Guide; Addison Wesley

Longman, Boston, MA; ISBN 0-201-73485-0; 2002; 232 pages.

	Abstract
	Introduction
	Raising Defect Removal Efficiency (DRE) Levels

	Summary and Conclusions
	References and Readings

